A TURBULENT BOUNDARY LAYER WITH INJECTION
INTO A COMPRESSIBLE FLUID WITH A
PRESSURE GRADIENT

N. 8. Krest'yaninova UDC 532.517.4
We use the semiempirical theory of turbulence to study the effect exerted by the input of a
homogeneous material through the main flow on the friction and on the heat transfer in the

turbulent boundary layer, in a compressible fluid with a pressure gradient.

In the case of a perfect gas, the equations describing the motion of the fluid in a flat-profile boundary
layer have the form [1]
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In the laminar sublayer (y = §;7), as is well known,
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Further, it is assumed that p is proportional to h. The surface friction and the heat flow, according to the
semiempirical theory, are determined for the case in which y = 07 by the equations
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Subsequently we will assume that I = ky and I :Ey. The numbers k and k are associated by the relation-
ship Pr; = k/k (see [2],p. 283). We will present the heat content in the form of a function of the longitudinal
velocity component. For this we turn to the Crocco variables x — x; and y — v¢ (x, y). The energy equation
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in these variables is written in the form
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Recalling the estimate from [3], we neglect the first term of the last equation. It is then written as follows:
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We solve the thermal problem by the method of successive approximations. In the zeroth approximation
we neglect the terms containing 9 /0x in (11), i.e., we assume that the same form of the function between
the heat content and the velocity is retained in flows with gradients as in the streamlining of a plate. Then,
following ([2], p- 287), we can write
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To find Sy(¢) and Ry(¢p) we have to know the distribution of the frictional shearing stresses across the
boundary layer. As earlier in [1], we assume
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Assuming Pry = 1, and if we assume that Pry is constant across the boundary layer, after integration we
obtain the following expressions for Sy(¢) and Ry(¢p):

when y = §;
1+ Pg)™ —1
Spole) =-LHER_ 1
_ Pr (1 4 Pg)? 2—Pr (14 Pp)¥
RlO“”’P?@-Pr)[ g 7@ B |”

674



when y = §;
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Initially integrating (7), and then (9) in conjunction with (5), (12), and (14), we find the velocity profiles in
the following form:

in the laminar sublayer
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in the turbulent portion of the flow
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From the condition

™
Ay Jy=b7~0 dy Jy=d7+0

we find
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The two equations (15) and (17) allow us to find the relationship between 67 and cgf/ 2 and between ¢; and
cf/2. Assuming y = 6, as well as ¢ = 1, and considering (17), from (16) we find the relationship which as-
sociates 6 with ¢f/ 2. The second equation for ¢ and cg/ 2 is found from the solution of the integral Karman
relation
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Because of the complexity of (18), as well as because of the impossibility of analytically taking the inte-
grals in the expressions for §* and §**, the problem was solved numerically.

Leaving the discussion of the results from the numerical calculation for later, let us return to the
solution of the energy equation in the next (the first) approximation, giving consideration to terms with 9p
/8x. We write the solution of (11) in the form
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Fig. 1. Variation in the coefficient

5 17
/ / of surface friction as a function of
/ / / ) the velocity at the edge of the lami-
/

i nar sublayer for various values of
/ // - // a, c,and Mj,: 0) Mjp = 0; 1) 0.8; 2)
/’ / / 3.0; 3) 5.0; the solid curves are for
/ / h, with a value of 5, and the dashed
!,s/ / ///’x curves are for a value of 1.
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Since Pr; and Pry, as well as the relationship between 8¢/8y and ¢ are different in the laminar sublayer
and in the turbulent portion of the flow, in connection with the adopted two-layer scheme we will find the
form of the functions relating h to ¢ separately for the different layers. To find S,(¢) and R, (¢}, in addition
to T(¢), we also have to know 9¢(p)/dy. This quantity will be found from (7) and (9), provided we take the
relationship between h and ¢ from the zeroth approximation. Let us present S,(¢) and R (¢) in the form of
Taylor series in the vicinity of ¢ = 0 in the region of the laminar sublayer and in the vieinity of ¢ = ¢y

in the turbulent portion of the flow. Thus,

when y = §;
— ™ gy "
GRS AU
n=0
(19)
_ (n) 9"
K@= Y R0
n=0
when y = §;
S = Y80 () L
4 n! ’
n=0
. (20)
R (@) = ERE"’@ y Loy
4 nt
n=0

676



A =—— r st-10”
\\ /
4 ~J - %) B -
. 3
a 1 2 \ b ) y
3 . / ‘
2 N =S \ 4 7 /
- —
LA T N 2 ///
o //
0 0 /
0 7 25 97 23 7

Fig. 2. Variation in heat content as a function of the velocity -
at the edge of the laminar sublayer (a) and the change in St

as a funetion of ¢; for various values of ¢ (b). The solid
curves denote ¢ = 0, the dash —dot curves denote 0.01. The
notation is the same as in Fig. 1.

the coefficients of the series are written as follows:
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Formulas (21) and (22) can be applied to the coefficients of the expansion in the turbulent portion of the flow,
but everywhere in these we have to replace S( )(0) by St(1 )(gal) Pr; by Pry, Tl(i )(0) by Tt(1 (o), Rl(i )(O) by

Rtl(gul), and we have to bear in mind that the expressions for the derivatives 8%y/9¢" and anh/ ¢t as well
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Fig. 3. Change in the coefficient of surface friction along the flow for various diffuser diver-
gence angles: 1) o = 8°% 2) 4° and for various convergence angles: 3) o = 4° 4) 8°; 0 denotes
flow along the plate.

Fig. 4. Variation in the ratio Cf/ cfy along the flow (a) (numerical notation for the curves is
the same as in Fig. 3; the solid curves) for M, =5 the dashed curves are for a value of 3;
I) ¢ = 0.0005; II) 0.005; III) 0.01) and as a function of the injection parameter (b) for various
quantities of injected material: 1) ¢ = 0.0005; 2) 0.005; 3) 0.01.
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TABLE 1. Effect of a Change in the Pressure Gradient for Vari-
ous Quantities of Inflowing Matter on the Ratios: 1) of the Thick-
ness of the Laminar Sublayer tothe Thickness of the Boundary
Layer (61*/ 6); II) of the Momentum Thickness to the Thickness of
the Boundary Layer (§**/6); III) of the Displacement Thickness to
the Momentum Thickness (6*/6™*) (when M = 5, he,y = 5)

Rein
107 | 10° | 10%
¢ P p
0 90 g0 ‘ g0 g l 90 @
7
0,7 0,168 0,170 0,187 0,167 0,168 0,180 0,183
0,6 0,052 0,053 0,046 0,046 0,048 0,065 0,061
0 0,5 0,008 0,010 0,007 0,007 0,009 0,011 0,017
0,4 0,001 0,004 0,004 0,001 0,001 0,002 0,003
0,3 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,7 0,179 0,179 0,179 0,179 0,183 0,183 0,191
0,6 0,056 0,057 0,057 0,157 0,063 0,059 0,080
0,001 0,5 0,012 0,012 0,012 0,012 0,012 0,018 0,025
0,4 0,002 0,001 0,001 0,001 0,001 0,004 0,008
0,3 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,7 0,223 0,223 0,223 0,223 0,224 0,226 0,231
0,6 0,096 0,007 0,097 0,097 0,099 0,102 0,110
0,005 0,5 0,037 0,036 0,036 0,037 0,037 0,044 0,058
0,4 0,011 0,011 0,011 0,012 0,014 0,016 0,024
0,3 0,003 0,003 0,004 0,006 0,005 0,011 0,017
1y
0,7 0,039 0,033 0,034 0,037 0,038 0,038 0,038
0,6 0,038 0,037 0,037 0,037 0,037 0,037 0,039
0 0,56 0,038 0,033 0,033 0,034 0,034 0,036 0,040
0,4 0,026 0,026 0,026 0,027 0,029 0,030 0,036
0.3 0,021 0,021 0,022 0,021 0,023 0,024 0,027
0,7 0,039 0,038 0,039 0,038 0,038 0,038 0,038
0,6 0,038 0,038 0,038 0,038 0,038 0,038 0,038
0,001 0,5 0,036 0,036 0,036 0,036 0,036 0,037 0,039
0,4 0,030 0,030 0,030 0,030 0,031 0,035 0,039
0,3 0,026 0,026 0,027 0,028 0,027 0,032 0,039
0,7 0,039 0,039 0,039 0,039 0,039 0,039 0,040
0,6 0,040 0,040 0,040 0,040 0,040 0,041 0,041
0,005 0,5 0,040 0,040 0,040 0,040 0,040 0,041 0,042
0,4 0,037 0,037 0,037 0,037 0,038 0,039 0,043
0,3 0,036 0,036 0,037 0,038 0,039 0,040 0,043
117

0,7 13,02 12,91 13,02 12,96 12,96 12,99 13,14
0,6 11,52 11,34 11,2 11,22 11,26 11,34 11,66
0 0,5 10,70 9,72 9,74 9,89 9,97 9,99 10,89
0,4 10,22 7,567 7,64 7,84 8,56 9,31 10,53
0,3 7,54 7,00 7,32 7,52 8,99 9,92 11,00
0,7 13,09 13,09 13,09 13,09 13,10 13,14 13,27
0,6 1,40 11,40 11,40 11,41 11,41 11,51 11,82
0,001 0,5 10,09 10,07 10,08 10,10 10,14 10,39 11,06
0,4 8,66 8,65 8,70 8,79 8,75 9,67 11,03
0,3 8,52 8,65 8,61 8,80 8,63 10,01 11,21
0,7 13,60 13,60 13,60 13,60 13,61 13,64 13,75
0,6 12,02 12,02 12,02 12,02 12,05 12,10 12,35
0,005 0,5 11,00 10,93 10,94 10,95 11,01 11,12 11,64
0,4 10,11 10,12 10,14 10,16 10,30 10,56 11,67
0,3 10,01 9,98 10,03 10,06 10,13 10,53 11,42

The heat content is thus given in the form of a function of velocity:
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where
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Integrating (7) and (9) in conjunction with (5), (6), (14), (23), and (24), in first approximation we obtain
the following velocity profiles:
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The subsequent approach to the solution in the first approximation is the same as in the zeroth approxima-
tion and the problem, as before, reduces to the numerical solution of (18).

As an example we calculated the flows inflat convergingand diyerging sections of a diffuser with vari-
ous angles of divergence (@ ~ 2°-8°) at a constant wall temperature (h,, = const). The coordinate x was
reckoned along the wall from the point of intersection for the extension of the walls, and y was reckoned in
a direction normal to x within the channel. The boundary layer was assumed to be turbulent from some
initial cross section with the coordinate x;, and the following quantities were specified within that section:
Rejp (~1 0°-107), M;jp (3-5), and Reff (~300). At the edge of the boundary layer all of the flow parameters
were assumed to be known from the condition of the one~dimensional isentropic flow of an ideal compres-
sible fluid. For such a flow, the following relationships have been established [4] between the parameters
in the various cross sections:

y+!
P Y= 0 1+ 370 Dz v—1,, T
M :.)_Cﬁ _____2___ , T — in p 1+ ) Min
Mil’l X 1+’Y—1M2 Tin 1+‘Y—;‘M2 p - 1+Y———'1M2
2

In the caleulations it is assumed that Pr; = 0.7 and Pr; = 1.0. The injection of the material is specified
on the basis of the law v¢,/vi, = c.

We give the result from the calculation of the zeroth approximation. nitially without solution for
the equation of the momenta, let us establish the relationships between certain of the parameters of the
turbulent boundary layer and the velocity at the edge of the laminar sublayer, which are obtained from the
numerical solution of (15) and (17).

Figure 1 shows the change in the coefficient of surface friction with a change in ¢; for flows with vari-
ous pressure gradients (@ ~ 2°-8°), and with various injections of matter (b ~107*-107% for various ranges
in Rem(105 -10% and in M;n(0.8, 3.0, 5.0). For comparison, here we find the curve for Cf/2 = f/(ki/k) ,
i.e., the relationship between c¢/ 2 and ¢; for a plate in an incompressible fluid, in the absence of injec-
t10n We see from Fig. 1 that these curves differ from each other only in the value of Mj, and in h,,. For
these M;, and hw the points applicable to flows with various pressure gradients and different values of Rejp
and b virtually group about a single curve, which coincides with the curve for a plate in the absence of in-
jection. This permits us to draw the conclusion that for various flows (with pressure gradients) in which
there is an inflow of material we can retain the same form for the relationship between c¢/ 2 and ¢; as
in the case of a flow without a pressure gradient and without injection of fresh material (i.e., we assume
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P = 0), and namely

2 (kR hsf ’
and here
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i (8

For a cold wall the coefficient of surface friction is larger. The curves showing ct/2 as a function of ¢y
for hy, = 1.0 (the dashed curves) shift upward in comparison with the curve for h = 5 (solidlines). Thepres-
ence of a pressure gradient and the injection of material, all other conditions bemg equal, have little effect
on the relationship between the heat content at the edge of the laminar sublayer and ¢; . Figure 2a shows
the change in hl as a function of ¢; for various values of Mjn and b. The points which relate to flows with
various pressure gradients and with injection (b and Rejpn) for given Mjy and h virtually group about a
single curve. It is therefore possible, with sufficient accuracy, to use the same form of the relationship
between the content and velocity in flows with injection and a pressure gradient (in the laminar sublayer,

in any case) as in the streamlining of a plate in the absence of injection, and namely (see [2], p. 288):

when y = §;

when y = (SZ

_ dh ¢ 1 - @ - (Plz
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From Fig. 2a we see that the heat flow from the hot wall increases with a reduction in M;, and that there
is a reduction in the heat flow to the cold wall. Figure 2b shows the effect of the injection of matter on the
change in the St number as a function of ¢ for various Mj,. The injection of matter at the constant M
number in the inlet section inecreases the heat flow from the hot wall and reduces the heat flow to the cold
wall; the St number as a function of ¢; changes only slightly in this case.

To determine the effect of the pressure gradient in the relationship between the thermal charac-
teristics and ¢7, we calculated the first approximation. Consideration of the five terms in (19) and (20)
ensured all of the required accuracy for the solution. It turned out that the results of the zeroth and first
approximations for semidiverging channel angles from 2°to 8° are correct to 0.5-1.0% over the entire
range of variation in ¢y .

With regard to the effect of the pressure gradient on the nature of the variation as a function of ¢y
for such ratios as 6;/6, 6**/6, and 6*/6**, we can say exactly what was said with regard to the above -cited
quantities, and namely, all other conditions being equal, the pressure gradient has virtually no effect on the
variation of these ratios as a function of velocity at the boundary of the laminar sublayer.

This is illustrated by Table 1 showing the ratios 6;/8, 6**/ 6, and 6%/ 6**, respectively, for various
pressure gradients and injections. Thus, proceeding from the above, we can assume that consideration of
the pressure gradient in the equation of momenta alone will be as accurate in terms of the solution as the
method described above.

Let us turn to the results of the numerical solution of the equation of momenta (18). Figure 3 shows
the variation in the coefficient of surface friction along the flow in the absence of injection. The comparison
is performed for identical differences in the Re numbers for the section under consideration and the initial
section. With negative pressure gradients, the coefficient of surface friction increases in comparison with
the case of flow on a plate. For positive pressure gradients the situation is the opposite. We note that in a
supersonic flow the existence of a pressure gradient has less effect on the variation in the coefficient of
surface friction than in the case of an incompressible fluid. The introduction of material reduces the effect
of the pressure gradient even further. The entire family of cited curves (for the given M;y,) in the case of
large injections (¢ = 0.01) virtually merges into a single curve.
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Figure 4a shows the change in cf/ cf, along the flow for various values of ¢. The curves for flows
with pressure gradients are given only for strong injection (c =0.01) and M;, = 5.0, so as not to burden
the figure. For other quantities of injected material and for M;, = 3the shape of the curvesis the same. With
a reduction in the M;, number, the effectiveness of the injection is diminished. For compressible fluids
the coordinates ¢ = (Cf/2)(Re**)1/4 (the parameter of the friction law), T' = (8** /ug)(dug /dx)(Re**)1/ ¢ (the
parameter of the pressure gradient), and A (the injection parameter), as in the case of incompressible
fluids, are not entirely suitable for the plotting of universal curves. Figure 4b shows the change in the
ratio c¢/ cp,on a plate (I" = 0) as a function of A. We see thatalthough the plotted points are grouped rather

tightly, they do not fall on a single curve. The greater the magnitude of the influx material, the more pro-
nounced in the reduction in eg/c¢ o with an increase in A.

NOTATION
X, ¥ are, respectively, the longitudinal and transverse coordinates;
Vx> Vy are, respectively, the longitudinal and transverse components of velocity;

is the density;
7 is the viscosity;
T is the sheer stress;
h is the heat content;
a is the heat flow;
u is the free-stream velocity;
) is the thickness of the boundary layer;

&* is the displacement thickness;

o** is the momentum thickness;

c is the coefficient of surface friction (cf0 is the surface friction in the absence of in-
jection);

2 is the velocity of injection;

k=0.39, ky =4.3 are empirical turbulence constants;

o is the half-angle of channel divergence;

S is the longitudinal coordinate reckoned along the flow from the point of boundary-

layer formation (S, is the coordinate of the cross section from which the boundary
layer is assumed to be turbulent);

,gg ZVX/U(S;
h =h/hg;
ug = u/vhg;

Reg = (péué/u(g)s are Reynolds numbers;
St is the Stanton number
M is the Mach number

Subscripts

6 denotes conditions at the edge of the boundary layer;
l denotes conditions at the edge of the laminar sublayer;
w denotes conditions at the wall;

in denotes conditions in the inlet cross section.
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